抗大变形管线管应变硬化指数的确定方法研究

甄晓川,黄进,陈燕

(天津钢管制造有限公司,天津 300301)

摘 要:总结了应力-应变曲线的4种常用数学模型;针对真应力-真应变曲线的幂函数本构方程,研究了以 屈强比为参数的应变硬化指数 n_H的拟合方法,并将两种钢级管线钢实测的真应力-真应变曲线与拟合的曲线进行 对比。对比分析认为:应变硬化指数 n_H随着管线钢材料屈强比的升高而减小;由 n_H确定的 Hollomon 幂函数方程 能够简单准确地描述大变形管线钢的真应力-真应变曲线。

关键词:管线管;大变形;应变硬化指数;屈强比;幂函数 **DOI**:10.19938/j.steelpipe.1001-2311.2021.4.25.28

开放科学(资源服务)标识码(OSID):

25

Study on Method as Used to Determine Strain Hardening Exponent of Linepipe with High Deformation Resistance

ZHEN Xiaochuan, HUANG Jin, CHEN Yan (Tianjin Pipe Corporation, Tianjin 300301, China)

Abstract: Summarized here in the paper are the four commonly-used mathematical models of stress-strain curve. In light with the power function constitutive equation of the true stress-train curve, the fitting method for the strain hardening exponent $n_{\rm H}$ with the yield ratio as the parameter are studied. The measured true stress-strain curves of the linepipe as made in two different steel grades are compared with the fitting curves. As a result of the analysis, it is regarded that the sad strain hardening exponent $n_{\rm H}$ is decreased along with the increase of the yield ratio; and that the Hollomon power function equation as determined by $n_{\rm H}$ can be used to simply and accurately describing the true tress-strain curve of the high deformationresistant linepipe.

Key words: linepipe; high deformation; strain hardening exponent; yield ratio; power function

目前全世界新发现的大储量油田和天然气田多 分布在深海、地震带、冻土带以及极地等特殊地质 条件地区。超长距离的管线建设在经过这些寒冷、 地质活动频繁地区时,仅仅考虑管线钢的强度级别 已经不能满足管道运输的安全需求,管线钢在承受 较高内部压力的同时还必须具有较高的抗大变形能 力和应变强化能力。将管道承受的应力限制在管材 屈服强度范围,这是当前采用的、安全的、保守的 设计方法。管线管的应变设计方法利用了金属材料 塑性变形后仍能维持稳定结构的特性^[1-2],正逐渐成 为管线管材质及结构设计领域被广泛采纳的设计方 法。使用应变设计的管线管案例见表 1^[3]。

尽管应变设计已被广泛关注,但目前还缺少与 应变设计相对应的参照物,抗大变形管线钢的性能 指标还没有统一的标准,除屈服强度、抗拉强度、断 后伸长率等常规力学性能指标外,产品研发及现 场施工作业普遍关注的力学性能参数还包括:无 屈服平台的平滑应力-应变曲线(round-house shape stress-strain curve)、较低的屈强比、较大的均匀延 伸率以及较高的应变硬化指数。

管线管极限工况抗大变形设计方案要求使用更 加先进的材料性能评价分析方法,这就包括管线钢 发生屈服之后的本构行为描述。一旦材料屈服开始 发生,管材的承载能力将由应变控制,而决定材料 应变行为的一个重要参数就是应变硬化指数。相关

甄晓川(1967-),男,工程师,从事金属材料力学性能的检验工作。

26

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
管线管项目名称	应变设计/项目位置	备注						
英国石油公司(BP)Northstar项目	阿拉斯加北极圈浅海							
挪威国家石油公司 Haltenpipe 项目	设计极限应变接近 0.5%, 大部分跨越不平整海床							
加拿大 Enbridge 公司 Norman Wells 项目	跨越永久冻土在岸管线,缓倾斜坡应变设计							
英国石油公司 Badami 项目	阿拉斯加北极圈河流交叉口							
加拿大 Alberta 的 NOVA Gas Transmission Line 项目	非连续永久冻土应变设计	已经使用应变设						
TAPS fuel gas pipeline	永久冻土中管子隆起屈曲的应变设计	计施工建设的管						
美国 ConocoPhillips 公司 Ekofisk Ⅱ pipelines 项目	下沉海床极限状态设计	线管工程						
荷兰 Shell 公司 Malampaya 项目	针对地震及海床运动的极限状态设计							
美国 Texaco 公司 Erskine replacement line 项目	高温高压双层管道极限状态设计							
Elgin/Franklin flowlines and gas export line 项目	管线管束极限状态设计							
Mallard in North Sea 项目	双层管道极限状态设计							
美国 ExxonMobil 公司 Sakhalin Island 项目	地震海域在岸管线设计	考虑或正在使用						
英国石油公司(BP)Liberty in offshore Alaska项目	北极圈浅海水域	应变设计建设中						
英国石油公司(BP)Thunder Horse项目	高温高压输送管极限状态设计	的管线管工程						

表1 使用应变设计的管线管案例

研究表明,钢材的强度级别越高,其应变硬化能力越会受到限制^[46]。因此,对于管材制造厂而言, 在了解管线钢均匀延伸率、屈服强度、抗拉强度、 屈强比等常规力学性能指标的同时,明确应变硬化 指数的计算方式和控制手段,对于管线管极限工况 抗大变形设计至关重要。

## 1 应力-应变曲线的数学表达式

关于金属材料单轴拉伸应力-应变曲线的数学 表达式,目前主要有4种,分别是Hollomon方程、 Ludwik方程、Swift方程以及Ramberg-Osgood(R-O) 方程。其中,前3个方程所用参数为真应力、真应 变,R-O方程可以针对工程应力、工程应变进行数 据分析。

1.1 Ludwik 方程

金属材料时常发生接近极限强度的大变形, Ludwik 认为这种情况下可以忽略弹性变形部分,并 提出了仅表征材料塑性变形行为的幂函数方程^[7]:

$$\sigma = C_0 + C_L \varepsilon^{n_L} \tag{1}$$

式中  $\sigma$  —— 均匀塑性变形阶段真应力, MPa;

$$C_0$$
—— 屈服行为开始发生时的应力, MPa;

C_L —— 材料强度系数;

ε —— 材料均匀塑性变形阶段的真应变;

n_L —— 材料应变硬化指数。

由公式(1)可得  $n_L = \ln(\sigma - C_0) - \ln C_L$ 。可以看出 应变硬化指数  $n_L$  与真应力 $\sigma$ 、屈服强度  $C_0$  和强度 系数 C_L有关, n_L与 C₀、C_L成反比。然而由于幂率 曲线往往偏离实际应力-应变曲线,给屈服强度的 确定带来一定难度,因此金属材料应力-应变行为 的数学表达缺乏足够精度。

### 1.2 Hollomon 方程

在 Ludwik 方程的基础上, Hollomon 直接去掉了  $C_0$ , 将公式(1)变为公式(2)^[8]:

$$\sigma = C_{\rm H} \varepsilon^{n_{\rm H}} \tag{2}$$

同样的,由公式(2)可得  $n_{\rm H}=\ln\sigma-\ln C_{\rm H}$ ,可以看 出应变硬化指数  $n_{\rm H}$ 与真应力  $\sigma$ 、强度系数  $C_{\rm H}$  有 关,并与材料强度系数  $C_{\rm H}$  成反比。其中,材料强 度系数  $C_{\rm H}$ 与 Ludwik 方程中的材料强度系数  $C_{\rm L}$  有 显著区别, $C_{\rm H}$ 是一个与材料极限工程应力 $\sigma_{\rm W}$ 相关 的参数,可以通过公式(3)计算得到:

$$C_{\rm H} = \left(\frac{\rm e}{n_{\rm H}}\right)^{n_{\rm H}} \sigma_{\rm kg} \tag{3}$$

式中 e —— 自然对数的底。

对大应变范围内的应力-应变曲线,Hollomon 方程比Ludwik 方程具有更高的精度。

1.3 Swift 方程

Swift 将应力-应变行为中的预应变或残余应变 因素纳入数学表达式,形成 Swift 方程^[9]:

$$\sigma = C_{\rm S}(\varepsilon_0 + \varepsilon)^{n_{\rm S}} \tag{4}$$

其中, C_s、n_s分别为材料强度系数和应变硬化 指数。引入残余应变的想法是考虑到采用直缝埋弧 焊接工艺生产大变形管线管过程中,钢板由于塑性

#### 变形产生了残余应变。

1.4 Ramberg-Osgood 方程

Ramberg 和 Osgood 于 1943 年提出了包含弹性 应变和塑性应变的应力-应变本构方程^[10],其表达 式为:

$$\varepsilon = \frac{\sigma}{E} + \varepsilon_{\rm p} \left(\frac{\sigma}{\sigma_{\rm p}}\right)^{n_{\rm R0}} \tag{5}$$

式中 E — 弹性模量, MPa;

- σ_p 测量应力, MPa, 通常可取 R_{p0.1}(非 比例延伸率为 1%时的应力)、R_{p0.2}
   或 R_{p0.5};
  - $\varepsilon_{p}$  与  $R_{p0.1}$ 、  $R_{p0.2}$  对应的塑性应变。

其中,应变硬化指数  $n_{RO}$  通过对 R-O 曲线塑性 段过屈服点( $\varepsilon_{\mathbb{R}}$ ,  $\sigma_{p}$ )和极限载荷点( $\varepsilon_{\mathbb{R}}$ ,  $\sigma_{\mathbb{R}}$ )的连 线拟合得到,即:

$$n_{\rm R0} = \frac{\ln\left[\frac{1}{\sigma_{\rm E}} (\boldsymbol{\varepsilon}_{\rm W} - \frac{\sigma_{\rm W}}{E})\right]}{\ln\left(\frac{\sigma_{\rm W}}{\sigma_{\rm p}}\right)} \tag{6}$$

#### 2 以屈强比为参数的应变硬化指数的拟合方法

以 Hollomon 方程为代表的幂函数应力-应变 本构关系,是均匀塑性变形阶段真应力-真应变 曲线特征最简单、准确的表达方式^[11]。在 ASTM E 646—2016《金属薄板材拉伸应变硬化指数(*n* 值)的 标准试验方法》中,以纯幂硬化关系(Hollomon 方 程)近似表示材料的特性,定义真应力与真实塑性 应变关系的指数为硬化指数*n*_H,即公式(2)。其中, 真应变 $\varepsilon$ 与工程应变 $\varepsilon_{r}$ 的关系为 $\varepsilon=\ln(1+\varepsilon_{r})$ ; 真应力 $\sigma$ 与工程应力 $\sigma_{r}$ 的关系为 $\sigma=\sigma_{r}(1+\varepsilon_{r})$ 。

管线钢在达到最大拉伸载荷之前发生均匀塑性 变形,将真应力 $\sigma$ 、真应变 $\varepsilon$ 带入公式(2),得到 工程应力 $\sigma_{T}$ 表达式:

$$\sigma_{\mathrm{T}} = C_{\mathrm{H}} \frac{\left[\ln(1 + \varepsilon_{\mathrm{T}})\right]^{n_{\mathrm{H}}}}{1 + \varepsilon_{\mathrm{T}}} \tag{7}$$

将工程应力、工程应变达到极大值的判据 d $\sigma_x$ / d $\varepsilon_x$ =0 代入公式(7)中可得:

$$n_{\rm H} = \ln(1 + \varepsilon_{\perp W}) = \varepsilon_{W} \tag{8}$$

即 Hollomon 方程中的应变硬化指数  $n_{\rm H}$ 等于发 生缩颈时的真应变  $\varepsilon_{\rm W}$ 。根据公式(2),该点对应的 最大真应力  $\sigma_{\rm W}$ 为:

$$\boldsymbol{\varepsilon}_{\mathrm{W}} = \boldsymbol{C}_{\mathrm{H}}(\boldsymbol{\varepsilon}_{\mathrm{W}})^{n_{\mathrm{H}}} = \boldsymbol{C}_{\mathrm{H}} \boldsymbol{n}_{\mathrm{H}}^{n_{\mathrm{H}}} \tag{9}$$

因此可以得到材料强度系数  $C_{\rm H}$  的表达式,为:

$$C_{\rm H} = \left(\frac{\rm e}{n_{\rm H}}\right)^{n_{\rm H}} \boldsymbol{\sigma}_{\rm T \, k \rm k} \tag{10}$$

如果真应力-真应变曲线上的屈服点( $\sigma_{\text{H}}, \varepsilon_{\text{H}}$ ) 位于拟合曲线上,将屈服点坐标带入 Hollomon 方 程,可得到 $\sigma_{\text{H}}=C_{\text{H}}\varepsilon_{\text{H}}$ "^H,将真应力、真应变分别替 换为工程应力、工程应变,并将其带入 $C_{\text{H}}$ 表达式,

导
$$\sigma_{\text{TER}}(1+\varepsilon_{\text{TER}})=(\frac{\mathrm{e}}{n_{\mathrm{H}}})^{n_{\mathrm{H}}}\sigma_{\mathrm{TER}}[\ln(1+\varepsilon_{\mathrm{TER}})^{n_{\mathrm{H}}}],即有:$$

$$\frac{\sigma_{\text{IM}}}{\sigma_{\text{IM}}} = (1 + \varepsilon_{\text{IM}}) \left[ \frac{n_{\text{H}}}{\text{eln}(1 + \varepsilon_{\text{IM}})} \right]^{n_{\text{H}}}$$
(11)

由于 $\frac{\sigma_{\text{TM}}}{\sigma_{\text{TM}}} = \frac{R_{\text{m}}}{R_{\text{e}}}$ ,因此公式(11)已经变成屈强

比(屈服强度  $R_e$ /抗拉强度  $R_m$ )的函数。考虑到材料 发生屈服时的工程应变  $\sigma_{\text{TM}} \ll 1$ ,  $\ln(1 + \varepsilon_{\text{TM}}) \approx \varepsilon_{\text{TM}}$ , 因此公式(11)可以写成:

$$\frac{R_{\rm m}}{R_{\rm e}} = (1 + \varepsilon_{\rm III}) \left(\frac{n_{\rm H}}{e\varepsilon_{\rm III}}\right)^{n_{\rm H}}$$
(12)

在上述公式中, ε_{τw}, σ_{τw}分别表示工程应力 达到极限时的应变和应力, ε_{τm}, σ_{τm}分别表示工 程应力达到屈服时的应变和应力。

由此可见,通过单轴拉伸试验获得材料屈服强度  $\sigma_{\text{TM}}$ 、抗拉强度  $\sigma_{\text{TM}}$ 计算屈强比,并确定屈服 点对应的工程总应变  $\varepsilon_{\text{TM}}$ ,即可通过回归法确定应 变硬化指数  $n_{\text{Ho}}$ 

随机选取 X52、X60 钢级大变形管线钢材料各 4 组单轴拉伸曲线,使用上述方法确定应变硬化指数 n_H。以屈强比为参数进行应变硬化指数拟合结 果见表 2。

两种不同钢级大变形管线钢的真应力-真应变 曲线拟合结果如图1所示,可以看出两条曲线在大 塑性变形2%~5%应变范围具有较高的重合度。

## 3 结 论

通过分析具有幂强化类型应力-应变拉伸曲线 方程,确定了以屈强比为参数的应变硬化指数 n_H 表达式。使用优化后的应变硬化指数 n_H表达式对 X52、X60 钢级大变形管线钢的拉伸曲线进行分析 处理,得到如下结论:

(1)通过单轴拉伸应力-应变曲线获得拟合所需的屈服强度  $\sigma_{\text{IM}}$ 、抗拉强度 $\sigma_{\text{IW}}$ 、屈服点对应的工程总应变  $\varepsilon_{\text{IM}}$ ,可用回归法确定应变硬化指数  $n_{\text{H}}$ ;

(2) X52 钢级管线钢应变硬化指数拟合平均值 为 0.124, X60 钢级管线钢应变硬化指数拟合平均

表 2 以出强比力参数进行应变硬化指数拟音结果									
钢级	编号	$\sigma_{ ext{l} ext{I} ext{I} ext{I}}$	$\sigma_{{\scriptscriptstyle {\rm I\!\! I\!\! W}}}$	屈强比	$oldsymbol{arepsilon}_{{\mathbb I}{\mathbb H}}$	$n_{ m H}$	n _H 平均值		
	1	421	525	0.80	0.008 7	0.126	0.124		
X52	2	389	499	0.78	0.006 8	0.124			
	3	430	530	0.81	0.008 1	0.121			
	4	393	496	0.79	0.007 5	0.124			
	1	543	623	0.87	0.011 0	0.103	0.108		
NGO	2	522	597	0.87	0.012 6	0.107			
X60	3	536	621	0.86	0.011 4	0.109			
	4	515	605	0.85	0.010 8	0.112			



## 1 — 实测曲线 2 — 拟合曲线

(b) X60 钢级管线钢

#### 图 1 大变形管线钢的真应力-真应变曲线拟合结果

值为 0.108, 结合屈强比发现, 屈强比较低的材质 具有更高的应变硬化指数;

(3) 拟合的真应力-真应变曲线与实测的曲线 具有较高重合度,尤其在大塑性变形 2%~5%应变 范围具有较高精确度。

#### 4 参考文献

(a) X52 钢级管线钢

- [1] LIESSEM A, KNAUF G, ZIMMERMANN S. Strain based design—what the contribution of a pipe manufacturer can be[C]//Proceedings of the Seventeenth (2007) International Offshore and Polar Engineering Conference, 2007.
- [2] LIU Bing, LIU X J, Zhang Hong. Strain-based design criteria of pipelines[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 884–888.
- [3] MOHR William. Strain-based design of pipelines [R]. Her-

ndon: US Department of Interior, Minerals Management Service, 2003.

- [4] HERTELE Stijn, WAELE Wim De, DENYS Rudi, et al. Full-range stress-strain behaviour of contemporary pipeline steels: part I. model description[J]. International Journal of Pressure Vessels and Piping, 2012, 92: 34–40.
- [5] HARA T, TERADA Y, SHINOHARA Y, et al. Metallurgical design and development of high deformable X100 line pipe steels suitable for strain-based design[C]. International Pipeline Conference, 2009.
- [6] WANG Y Y, LIU M, SONG Y X, et al. Tensile strain models for strain-based design of pipelines [C]. International Conference on Offshore Mechanics and Arctic Engineering, 2012.
- [7] LUDWIK P. Elemente der technologischen mechanik [M]. Berlin: Springer-Verlag Berlin Heidelberg GmbH, 1909.
- [8] HOLLOMON J H. Tensile deformation [J]. Transactions of the Metallurgical Society of AIME, 1945, 12: 268–290.
- [9] HILL R. The mathematical theory of plasticity[M]. Oxford: Oxford University Press, 1985.
- [10] 蔡晓闻,高连新,常龙.套管挤毁试验水下应变测试 方法的研究[J].钢管,2009,38(4):66-69.
- [11] LI T, ZHENG J Y, CHEN Z W. Description of full-range strain hardening behavior of steels [J]. SpringerPlus, 2016, 5(1).

(收稿日期: 2021-02-25; 修定日期: 2021-03-16)

### ●简 讯

内蒙古包钢钢联股份有限公司钢管公司 Φ482 mm 系列薄壁钢管成功试制 [发布日期: 2021-05-31] 2021 年 5月,内蒙古包钢钢联股份有限公司钢管公司实现采用 Φ390 mm 管坯生产 Φ426 mm×10 mm 规格薄壁钢管首次全流程产业 化试制成功。这是继 2021 年 1月,成功采用 Φ390 mm 管坯生产 Φ524 mm×24.2 mm 规格毛管后的又一次突破。

(摘自:内蒙古包钢钢联股份有限公司网站)