新型超级不锈钢 (MORS钢)

简介了一种新型高A1低Cr超级不锈钢(MORS钢)的化学成分、主要性能及应用范围。 **关键词** MORS钢 高A1低Cr不锈钢 成分 性能

A NEWLY DEVELOPED SUPER STAINLESS STEEL (MORS ST.)

A briefing is given in this article, involving information regarding a new kind of high Al, low Cr super stainless steel, including its chemical composition, major properties and application scope.

Key words MORS Steel High Al, low Cr stainless steel Composion Properties

最近,美国辛辛那提大学开发了一种高A1低Cr超级不锈钢(简称 MORS 钢)。该钢属于 Fe-Ni-Cr 系奥氏体不锈钢,具有优良的抗高温氧化、耐腐蚀、时效硬化及加工性能。现将其化学成分及 主要 性能 简介如下。

1 MORS钢的化学成分

MORS钢的化学成分见表 1。

表1 MORS钢的化学成分(%)

Ni	Cr	Αl	V	Mn	С	N	Cu
10~45	4~25	3.5~ 5.5	0.5~ 5	0~20	0~0.5	0~0.5	0~1

2 抗高温氧化性能

由于MORS 钢的 Al 含量较高,高温加热时合金表面有一层能抗氧化的氧化膜生成,因而该钢的抗高温氧化性能很好。表2比较了 MORS钢、HK40 钢、18Cr 钢、Ni-Cr系电热合金、Fe-Cr-Al 系高电阻合金(化学成分见表3)的抗高温氧化性能。抗高温氧化性能试验条件是:在1320℃的重油加热炉中加热、冷却,试样加热时间8h,炉中冷却16h,重复进行25次。从表2可以

看出, MORS钢的抗高温氧化性能最好。

弗2 抗高温量化试验结果

	79.0	,- ~ ~ .					
	例	种	氧化增减量(mg/cm ² ·天)				
	MOI	RS	-0.1				
	HK	40	- 25,9				
	18C	r	-472.6				
Ni-	·Cr系	电热合金	- 3.8				
Fe-Cr-Al系高电阻合金			+0.4				
			The second secon				

表3 抗高温氧化试验钢的化学成分(%)

钢	种	Ni	Cr	Al	C
MORS	3	25	15	5	0.02
HK40	•	20	25	-	0.4
18Cr'	•	_	18	-	1.5
Ni-Cr系电热合金		80	20		0.05
Fe-Cr-AI系高电阻合金			22	5	0.05

• 为铸件

赛4 MORS钢机械性能

状态	试验温度 (℃)	抗拉强度 (MPa)	屈服强度 (MPa)	延伸率 (%)	断面收缩率 (%)
固溶如	上室温	620	210	48	66
理	1000	72	72	77	65
	1200	19	16	134	99
时效处 理	上 室温	1374	834	3	13
	540	777	591	18	63

3 机械性能

MORS钢的机械性能示于表 4。由于该

●技术讲座

水平连铸机的现状和发展(续二)

颅 维(成都无缝钢管厂)

HCC-HISTORY & TODAY (Part II)

Gu Wei

(Chengdu Seamless steel Tube Plant)

3.6.2 拉坯机

水平连铸机有两种结构方式,即辊式拉 坯机和夹板式拉坯机。而辊式拉坯机又有牌 坊式和悬臂式之分。

脚坊式的辊式拉坯机采用单 辊 驱 动 方式。下辊为主动辊,其位置不变,而上辊依 靠液压缸将铸坯压紧在上下辊之间。美国铸钢工程公司的悬臂式拉坯机。上下辊的配置 基本上也是这种结构,如图14所示。

原联邦德国铸造工艺公司的悬臂式拉坯 机为开式焊接结构。拉坯辊为悬臂式安装, 利用油缸通过铰轴使上辊上、下移动。工作 辊为两半可分式,以便于改变浇铸断面时能 在线快速换辊,且维修清理方便。拉坯辊采 用中空通水冷却,辊后装有冷却水板,以防 止辐射热对设备的影响。拉坯辊辊面由两段 偏心圆弧组成,拉坯时使铸坯均匀与辊面接

图14 带有力矩电机的拉坯机构 1-编码器 2-液压缸 3-压辊 4-铸坯 5-轴 6-驱动辊 7-保护板 8-电机支架

触,以减小辊压带来的铸坯椭圆度。

为了连铸大直径铸坯, 曼内斯曼-德马克公司设计制造了液压夹板式拉坯机, 如图 15所示。这种无辊传动装置借助于杠杆系统

钢含有较高的 Ni、Al 元素, 因而促进了钢的沉淀硬化, 保证了该钢在高温下具有较高的机械性能。

4 加工性能

MORS 钢在常温下的延伸率和 断 面收缩率都较高,其冷加工性能比含高Al的Fe-Cr-Al系高电阻合金好。

MORS 钢经高温氧化加热 后, 表 面生成有一层牢固的氧化铝保护膜,这种保护膜

的耐高温氧化性能要比普通不锈钢、耐热钢 及铁基和镍基合金高温加热后的保护膜耐高 温氧化性能好得多,因此, MORS 钢 可用 作热电偶保护管,锻模、金属铸模和耐热铸 件,工业炉内部构件及电阻式发热元件(电 热体)等。另外, MORS 钢时 效处理材的 屈服强度比一般的奥氏体系不锈钢高得多, 还可作为非磁性结构钢使用。

栗桂琴编译

(收稿日期: 1993-02-22)