• RCCSE中国核心学术期刊
  • CA、AJ、JST、CSA、IC、EBSCO收录期刊
  • 中国高质量科技期刊金属材料(金属学与金属工艺)领域分级目录期刊
ZHANG Zhonghua, LIU Chuansen, QI Yameng, ZHU Wenqi, ZHAO Yongan. Present Application Status,Demand Analysis and Thinking Concerning Steel Pipe Used in New Energy Field[J]. STEEL PIPE, 2024, 53(1): 1-15. DOI: 10.19938/j.steelpipe.1001-2311.2024.1.01.15
Citation: ZHANG Zhonghua, LIU Chuansen, QI Yameng, ZHU Wenqi, ZHAO Yongan. Present Application Status,Demand Analysis and Thinking Concerning Steel Pipe Used in New Energy Field[J]. STEEL PIPE, 2024, 53(1): 1-15. DOI: 10.19938/j.steelpipe.1001-2311.2024.1.01.15

Present Application Status,Demand Analysis and Thinking Concerning Steel Pipe Used in New Energy Field

More Information
  • Received Date: December 26, 2023
  • Available Online: March 12, 2024
  • Thanks to the Strategy of Double Carbon (carbon dioxide emission peak and neutrality) the development of new energy and related fields has brought the new application prospect of steel pipes,and put forward new requirements for their functions and performances. Focusing on the CO2 transmission pipe as used in the technology fields of carbon ca- pture,utilization and storage for safety,the hydrogen gas transmission pipe as used in the hydrogen energy field,and the injection production pipe as used for salt cavern compressed air energy storage in the energy storage field,here in the article,the present application status and the research progress of the new energy service steel pipes is summarized,and the demands for the pipes in various fields are analyzed. Furthermore,presented here,under the Double Carbon Strategy background,are relevant thoughts and suggestions about the essential theoretical research,the critical technology development,and the standard system construction of the new energy service steel pipes.
  • [1]
    世界气象组织. 2022年全球气候状况[R/OL].(2023-05-06)[2023-12-27]. https://finance.sina.com.cn/esg/2023-05-06/doc-imysvrzu3051976.shtml.
    [2]
    SUN Chong,LIU Jianxin,SUN Jianbo,et al. Probing the initial corrosion behavior of X65 steel in CCUS-EOR environments with impure supercritical CO2 fluids[J]. Corrosion Science,2021,189:109585.
    [3]
    SUN Chong,SUN Jianbo,LIU Subiao,et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application[J]. Corrosion Science,2018,137:151-162.
    [4]
    GALE J,DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy,2004,29(9/10):1319-1328.
    [5]
    殷布泽,黄维和,苗青,等. CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J]. 油气储运,2023,42(9):1042-1054.
    [6]
    SCHREMP F W,ROBERSON G R. Effect of supercritical carbon dioxide (CO2) on construction materials[J]. SPE Journal,1975,15(3):227-233.
    [7]
    PROPP W A,CARLESON T E,WAI C M,et al. Corrosion in supercritical fluids[R]. United States:Office of Scientific & Technical Information Technical Reports,1996.
    [8]
    DUGSTAD A,MORLAND B,CLAUSEN S. Corrosion of transport pipelines for CO2 effect of water ingress[J]. Energy Procedia,2011,4:3063-3070.
    [9]
    SIM S,BOCHER F,COLE I,et al. Investigating the effect of watercontent in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion,2014,70(2):185-195.
    [10]
    LIU A Q,BIAN C,WANG Z M,et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations[J]. Corrosion Science,2018,134:149-161.
    [11]
    高怡萱,潘杰,张建,等. 超临界二氧化碳输送管道内腐蚀研究进展[J/OL]. 材料导报:1-16.
    [12]
    JIANG X,QU D,SONG X,et al. Critical water content for corrosion of X65 mild steel in gaseous,liquid and supercritical CO2 stream[J]. International Journal of Greenhouse Gas Control,2019,85:11-22.
    [13]
    HUA Y,BARKER R,NEVILLE A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2[J]. International Journal of Greenhouse Gas Control,2015,37:412-423.
    [14]
    张玉成,鞠新华,庞晓露,等. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报,2015,35(3):220-226.
    [15]
    HUA Y,BARKER R,NEVILLE A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments[J]. Applied Surface Science,2015,356:499-511.
    [16]
    SUN C,SUN J,WANG Y,et al. Synergistic effect of O2,H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science,2016,107:193-203.
    [17]
    WANG W,SHEN K,TANG S,et al. Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2[J]. Process Safety and Environmental Protection,2019,130:57-66.
    [18]
    XIANG Y,WANG Z,XU C,et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. The Journal of Supercritical Fluids,2011,58(2):286-294.
    [19]
    HUA Y,BARKER R,NEVILLE A. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2[J]. International Journal of Greenhouse Gas Control,2017,64:126-136.
    [20]
    ZENG Y M,LI K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines[J]. Corrosion Science,2020,165:108404.
    [21]
    LI K Y,ZENG Y M,LUO J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation[J]. Corrosion Science,2021,190:109639.
    [22]
    WEI L,PANG X L,GAO K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science,2016,103:132-144.
    [23]
    严永博,邓洪达,肖雯雯,等. 超临界CO2输送管材防腐技术研究进展[J]. 腐蚀科学与防护技术,2019,31(4):436-442.
    [24]
    HUA Y,BARKER R,NEVILLE A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2[J]. International Journal of Greenhouse Gas Control,2014,31:48-60.
    [25]
    WEI L,GAO K. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2-saturated aqueous environments[J]. Journal of Alloys and Compounds,2019,792:328-340.
    [26]
    FARELAS F,CHOI Y S,NESIC S. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide[J]. Corrosion,2013,69(3):243-250.
    [27]
    XU M,LI W,ZHOU Y,et al. Effect of pressure on corrosion behavior of X60,X65,X70,and X80 carbon steels in water-unsaturated supercritical CO2 environments[J]. International Journal of Greenhouse Gas Control,2016,51:357-368.
    [28]
    JIANG X,QU D,SONG X,et al. Critical water content for corrosion of X65 mild steel in gaseous,liquid and supercritical CO2 stream[J]. International Journal of Greenhouse Gas Control,2019,85:11-22.
    [29]
    Pipeline and Hazardous Materials Safety Administration. Denbury gulf coast pipelines,LLC-2/14/2011[EB/OL]. (2017-07-05)[2023-10-13]. https://www.phmsa.dot.gov/inspections-and-investigations/denbury-gulf-coast-pipelines-llc-2142011.
    [30]
    TWI. Quality of HFI/ERW pipe[R]. Cambridge:UK,2013.
    [31]
    国家发展改革委,国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23)[2023-10-10]. https://www.gov.cn/xinwen/2022-03/24/5680975/files/6b388f7c324a4b1db0b30dc6f52b7e02.pdf.
    [32]
    杜建伟,明洪亮,王俭秋. 输氢管道氢脆研究现状及进展[J]. 油气储运,2023,42(10):1107-1117.
    [33]
    WANG H T,TONG Z,ZHOU G J,et al. Research and demonstration on hydrogen compatibility of pipelines:A review of current status and challenges[J]. International Journal of Hydrogen Energy,2022,47(66):28585-28604.
    [34]
    任若轩,游双矫,朱新宇,等. 天然气掺氢输送技术发展现状及前景[J]. 油气与新能源,2021,33(4):26-32.
    [35]
    LYNCH S. Hydrogen embrittlement phenomena and mechanisms[J]. Corrosion reviews,2012,30(3/4):105-123.
    [36]
    GERBERICH W. Gaseous hydrogen embrittlement of materials in energy technologies:the problem,its characterisation and effects on particular alloy classes[M]. Woodhead Publishing Series,2012.
    [37]
    DADFARNIA M,MARTIN M L,NAGAO A,et al. Modeling hydrogen transport by dislocations[J]. Journal of the Mechanics and Physics of Solids,2015,78:511-525.
    [38]
    DWIVEDI S K,VISHWAKARMA M. Hydrogen embrittlement in different materials:A review[J]. International Journal of Hydrogen Energy,2018,43(46):21603-21616.
    [39]
    REN X C,ZHOU Q J,SHAN G B,et al. A nucleation mechanism of hydrogen blister in metals and alloys[J]. Metallurgical and materials transactions A,2008,39:87-97.
    [40]
    MARTIN M L,SOFRONIS P. Hydrogen-induced cracking and blistering in steels:A review[J]. Journal of Natural Gas Science and Engineering,2022,101:104547.
    [41]
    ROBERTSON I M,BIRNBAUM H K,SOFRONIS P. Hydrogen effects on plasticity[J]. Dislocations in Solids, 2009,15:249-293.
    [42]
    ROBERTSON I M,BIRNBAUM H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel[J]. Acta Metallurgica,1986,34(3):353-366.
    [43]
    BIRNBAUM H K,SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering:A,1994,176(1/2):191-202.
    [44]
    TROIANO A R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography Microstructure and Analysis,2016,5(6):557-569.
    [45]
    HU S,YIN Y,LIANG H,et al. A quantification study of hydrogen-induced cohesion reduction at the atomic scale[J]. Materials & Design,2022,218:110702.
    [46]
    WU W,WANG Y,TAO P,et al. Cohesive zone modeling of hydrogen-induced delayed intergranular fracture in high strength steels[J]. Results in Physics,2018,11:591-598.
    [47]
    廖振洋,张继舜,赵吉庆,等. 超高压临氢环境用抗氢钢研究进展[J]. 钢铁研究学报,2023,35(9):1053-1064.
    [48]
    王洪海,陈俊德,陈冬,等. 高强度低合金钢氢脆预防措施[J]. 石油化工设备,2018,47(5):48-55.
    [49]
    BANDYOPADHYAY N,KAMEDA J,MCMAHON C J. Hydrogen-induced cracking in 4340-type steel:Effects of composition,yield strength and H2 pressure[J]. Metallurgical and Materials Transactions A,1983,14(4):881-888.
    [50]
    THOMPSON A W,BERNSTEIN I M. The role of metallurgical variables in hydrogen-assisted environmental fracture[J]. Advances in Corrosion Science and Technology,1980:53-175.
    [51]
    谷海容,卢茜倩,刘永刚,等. 微合金元素Nb、V对热成形钢组织及氢脆敏感性影响[J]. 安徽工业大学学报(自然科学版),2018,35(4):295-300.
    [52]
    张松奇,李媛媛,王德俊. 钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响[J]. 钢铁钒钛,2022,43(6):161-165.
    [53]
    徐智宝. 高强度非调质钢的氢脆敏感性研究[D]. 北京:北京交通大学,2018.
    [54]
    王荣. 失效机理分析与对策[M]. 北京:机械工业出版社,2020:80-101.
    [55]
    杨志康. 钢的氢脆[J]. 化工炼油机械,1984,13(5):5-14.
    [56]
    李仁顺,吴忍畊,臧佩绅,等. 热处理对30CrMnSiA钢抗氢脆性能的影响[J]. 中国腐蚀与防护学报,1990(3):187-196.
    [57]
    周琦,季根顺,杨瑞成,等. 管线钢中带状组织与氢致开裂[J]. 甘肃工业大学学报,2002,28(2):30-33.
    [58]
    王葛,杜雄飞,高静娜,等. 大直径厚壁压力气瓶30CrMo钢最终热处理工艺数值模拟与实验[J]. 材料热处理学报,2016,37(3):210-215.
    [59]
    薛正良,李正邦,张家雯. 钢的脱氧与氧化物夹杂控制[J]. 特殊钢,2001,22(6):24-27.
    [60]
    袁玉珍,褚幼义,梁福起,等. 稀土对低硫16Mn钢抗氢损伤性能的影响[J]. 中国稀土学报,1986(3):34-41.
    [61]
    HOLBROOK J H,COLLINGS E W,CIALONE H J,et al. Hydrogen degradation of pipeline steels:final report[R]. 1986.
    [62]
    Standard specification for pipe,steel,black and hot-dipped,zinc-coated,welded and seamless:ASTM A 53/A 53M—2018[S]. 2018.
    [63]
    Standard specification for seamless carbon steel pipe for high-temperature service:ASTM A 106/A 106M—2018[S]. 2018.
    [64]
    Standard specification for seamless and welded steel pipe for low-temperature service and other applications with required notch toughness:ASTM A 333/A 333M—2016.[S]. 2016.
    [65]
    Specification for line pipe:API Spec 5L—2018[S]. 2018.
    [66]
    ASME Standards Technology,LLC. Hydrogen standardization interim report for tanks,piping and pipelines[R]. ASME:USA,2005.
    [67]
    孔莹莹,崔继彤,韩辉,等. 国内外氢气管道输送技术标准对比与探讨[J]. 油气储运,2023,42(8):944-951.
    [68]
    程玉峰. 高压氢气管道氢脆问题明晰[J]. 油气储运,2023,42(1):1-8.
    [69]
    张明,邢泰高,易锫,等. 盐穴压缩空气储能系统N80注采管柱腐蚀特性研究[J]. 湖北电力,2023,47(1):85-90.
    [70]
    吴志勇. 盐穴压缩空气储能库注采管柱优选[D]. 北京:中国石油大学(北京),2021.
    [71]
    李海奎. 注空气过程中井下管柱氧腐蚀防护技术研究[D]. 青岛:中国石油大学(华东),2018.
    [72]
    吴静. 注空气驱油过程中碳钢的腐蚀行为研究[D]. 武汉:华中科技大学,2016.
    [73]
    贾海平. 钻井中盐膏层危害及其应对措施分析[J]. 中国石油和化工标准与质量,2023,43(3):97-99.
    [74]
    焦国山. 盐膏层固井难点及应对措施研究[J]. 中国石油和化工标准与质量,2022,42(21):118-120.
  • Cited by

    Periodical cited type(6)

    1. 庄钢,陈洪琪,高瑞全,谷立功. “十四五”期间我国重要钢管品种的发展与创新. 钢管. 2025(01): 1-6 . 本站查看
    2. 孙宏,韩秀林,孙志刚,宗秋丽. 二氧化碳管道输送技术进展. 钢管. 2024(02): 9-16 . 本站查看
    3. 郑贵英,庄钢. 在困境中砥砺前行——2023年我国钢管行业高质量发展之路. 钢管. 2024(04): 1-5 . 本站查看
    4. 牛爱军,毕宗岳,韦奉,黄晓辉,刘斌,席敏敏. 我国新能源输送用管材研究进展及发展趋势. 焊管. 2024(10): 16-24 .
    5. 黄晓辉,毛浓召,程文广,柯星星,赵红波,赵强,张君,范庆福,刘晓龙. 超临界二氧化碳输送用X65M直缝埋弧焊管开发. 焊管. 2024(10): 80-85 .
    6. 赵志伟,吴亚军,白福良,郭立萍,高秋胜. 内覆不锈钢双金属复合热煨弯管开发. 钢管. 2024(05): 47-50 . 本站查看

    Other cited types(0)

Catalog

    Article views (217) PDF downloads (142) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return