Citation: | ZHANG Zhonghua, LIU Chuansen, QI Yameng, ZHU Wenqi, ZHAO Yongan. Present Application Status,Demand Analysis and Thinking Concerning Steel Pipe Used in New Energy Field[J]. STEEL PIPE, 2024, 53(1): 1-15. DOI: 10.19938/j.steelpipe.1001-2311.2024.1.01.15 |
[1] |
世界气象组织. 2022年全球气候状况[R/OL].(2023-05-06)[2023-12-27]. https://finance.sina.com.cn/esg/2023-05-06/doc-imysvrzu3051976.shtml.
|
[2] |
SUN Chong,LIU Jianxin,SUN Jianbo,et al. Probing the initial corrosion behavior of X65 steel in CCUS-EOR environments with impure supercritical CO2 fluids[J]. Corrosion Science,2021,189:109585.
|
[3] |
SUN Chong,SUN Jianbo,LIU Subiao,et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application[J]. Corrosion Science,2018,137:151-162.
|
[4] |
GALE J,DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy,2004,29(9/10):1319-1328.
|
[5] |
殷布泽,黄维和,苗青,等. CO2管道泄漏减压特性与裂纹扩展研究现状及发展趋势[J]. 油气储运,2023,42(9):1042-1054.
|
[6] |
SCHREMP F W,ROBERSON G R. Effect of supercritical carbon dioxide (CO2) on construction materials[J]. SPE Journal,1975,15(3):227-233.
|
[7] |
PROPP W A,CARLESON T E,WAI C M,et al. Corrosion in supercritical fluids[R]. United States:Office of Scientific & Technical Information Technical Reports,1996.
|
[8] |
DUGSTAD A,MORLAND B,CLAUSEN S. Corrosion of transport pipelines for CO2 effect of water ingress[J]. Energy Procedia,2011,4:3063-3070.
|
[9] |
SIM S,BOCHER F,COLE I,et al. Investigating the effect of watercontent in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Corrosion,2014,70(2):185-195.
|
[10] |
LIU A Q,BIAN C,WANG Z M,et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations[J]. Corrosion Science,2018,134:149-161.
|
[11] |
高怡萱,潘杰,张建,等. 超临界二氧化碳输送管道内腐蚀研究进展[J/OL]. 材料导报:1-16.
|
[12] |
JIANG X,QU D,SONG X,et al. Critical water content for corrosion of X65 mild steel in gaseous,liquid and supercritical CO2 stream[J]. International Journal of Greenhouse Gas Control,2019,85:11-22.
|
[13] |
HUA Y,BARKER R,NEVILLE A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2[J]. International Journal of Greenhouse Gas Control,2015,37:412-423.
|
[14] |
张玉成,鞠新华,庞晓露,等. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报,2015,35(3):220-226.
|
[15] |
HUA Y,BARKER R,NEVILLE A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments[J]. Applied Surface Science,2015,356:499-511.
|
[16] |
SUN C,SUN J,WANG Y,et al. Synergistic effect of O2,H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science,2016,107:193-203.
|
[17] |
WANG W,SHEN K,TANG S,et al. Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2[J]. Process Safety and Environmental Protection,2019,130:57-66.
|
[18] |
XIANG Y,WANG Z,XU C,et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. The Journal of Supercritical Fluids,2011,58(2):286-294.
|
[19] |
HUA Y,BARKER R,NEVILLE A. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2[J]. International Journal of Greenhouse Gas Control,2017,64:126-136.
|
[20] |
ZENG Y M,LI K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines[J]. Corrosion Science,2020,165:108404.
|
[21] |
LI K Y,ZENG Y M,LUO J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation[J]. Corrosion Science,2021,190:109639.
|
[22] |
WEI L,PANG X L,GAO K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science,2016,103:132-144.
|
[23] |
严永博,邓洪达,肖雯雯,等. 超临界CO2输送管材防腐技术研究进展[J]. 腐蚀科学与防护技术,2019,31(4):436-442.
|
[24] |
HUA Y,BARKER R,NEVILLE A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2[J]. International Journal of Greenhouse Gas Control,2014,31:48-60.
|
[25] |
WEI L,GAO K. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2-saturated aqueous environments[J]. Journal of Alloys and Compounds,2019,792:328-340.
|
[26] |
FARELAS F,CHOI Y S,NESIC S. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide[J]. Corrosion,2013,69(3):243-250.
|
[27] |
XU M,LI W,ZHOU Y,et al. Effect of pressure on corrosion behavior of X60,X65,X70,and X80 carbon steels in water-unsaturated supercritical CO2 environments[J]. International Journal of Greenhouse Gas Control,2016,51:357-368.
|
[28] |
JIANG X,QU D,SONG X,et al. Critical water content for corrosion of X65 mild steel in gaseous,liquid and supercritical CO2 stream[J]. International Journal of Greenhouse Gas Control,2019,85:11-22.
|
[29] |
Pipeline and Hazardous Materials Safety Administration. Denbury gulf coast pipelines,LLC-2/14/2011[EB/OL]. (2017-07-05)[2023-10-13]. https://www.phmsa.dot.gov/inspections-and-investigations/denbury-gulf-coast-pipelines-llc-2142011.
|
[30] |
TWI. Quality of HFI/ERW pipe[R]. Cambridge:UK,2013.
|
[31] |
国家发展改革委,国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23)[2023-10-10]. https://www.gov.cn/xinwen/2022-03/24/5680975/files/6b388f7c324a4b1db0b30dc6f52b7e02.pdf.
|
[32] |
杜建伟,明洪亮,王俭秋. 输氢管道氢脆研究现状及进展[J]. 油气储运,2023,42(10):1107-1117.
|
[33] |
WANG H T,TONG Z,ZHOU G J,et al. Research and demonstration on hydrogen compatibility of pipelines:A review of current status and challenges[J]. International Journal of Hydrogen Energy,2022,47(66):28585-28604.
|
[34] |
任若轩,游双矫,朱新宇,等. 天然气掺氢输送技术发展现状及前景[J]. 油气与新能源,2021,33(4):26-32.
|
[35] |
LYNCH S. Hydrogen embrittlement phenomena and mechanisms[J]. Corrosion reviews,2012,30(3/4):105-123.
|
[36] |
GERBERICH W. Gaseous hydrogen embrittlement of materials in energy technologies:the problem,its characterisation and effects on particular alloy classes[M]. Woodhead Publishing Series,2012.
|
[37] |
DADFARNIA M,MARTIN M L,NAGAO A,et al. Modeling hydrogen transport by dislocations[J]. Journal of the Mechanics and Physics of Solids,2015,78:511-525.
|
[38] |
DWIVEDI S K,VISHWAKARMA M. Hydrogen embrittlement in different materials:A review[J]. International Journal of Hydrogen Energy,2018,43(46):21603-21616.
|
[39] |
REN X C,ZHOU Q J,SHAN G B,et al. A nucleation mechanism of hydrogen blister in metals and alloys[J]. Metallurgical and materials transactions A,2008,39:87-97.
|
[40] |
MARTIN M L,SOFRONIS P. Hydrogen-induced cracking and blistering in steels:A review[J]. Journal of Natural Gas Science and Engineering,2022,101:104547.
|
[41] |
ROBERTSON I M,BIRNBAUM H K,SOFRONIS P. Hydrogen effects on plasticity[J]. Dislocations in Solids, 2009,15:249-293.
|
[42] |
ROBERTSON I M,BIRNBAUM H K. An HVEM study of hydrogen effects on the deformation and fracture of nickel[J]. Acta Metallurgica,1986,34(3):353-366.
|
[43] |
BIRNBAUM H K,SOFRONIS P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering:A,1994,176(1/2):191-202.
|
[44] |
TROIANO A R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography Microstructure and Analysis,2016,5(6):557-569.
|
[45] |
HU S,YIN Y,LIANG H,et al. A quantification study of hydrogen-induced cohesion reduction at the atomic scale[J]. Materials & Design,2022,218:110702.
|
[46] |
WU W,WANG Y,TAO P,et al. Cohesive zone modeling of hydrogen-induced delayed intergranular fracture in high strength steels[J]. Results in Physics,2018,11:591-598.
|
[47] |
廖振洋,张继舜,赵吉庆,等. 超高压临氢环境用抗氢钢研究进展[J]. 钢铁研究学报,2023,35(9):1053-1064.
|
[48] |
王洪海,陈俊德,陈冬,等. 高强度低合金钢氢脆预防措施[J]. 石油化工设备,2018,47(5):48-55.
|
[49] |
BANDYOPADHYAY N,KAMEDA J,MCMAHON C J. Hydrogen-induced cracking in 4340-type steel:Effects of composition,yield strength and H2 pressure[J]. Metallurgical and Materials Transactions A,1983,14(4):881-888.
|
[50] |
THOMPSON A W,BERNSTEIN I M. The role of metallurgical variables in hydrogen-assisted environmental fracture[J]. Advances in Corrosion Science and Technology,1980:53-175.
|
[51] |
谷海容,卢茜倩,刘永刚,等. 微合金元素Nb、V对热成形钢组织及氢脆敏感性影响[J]. 安徽工业大学学报(自然科学版),2018,35(4):295-300.
|
[52] |
张松奇,李媛媛,王德俊. 钒微合金化对马氏体-贝氏体钢氢脆敏感性的影响[J]. 钢铁钒钛,2022,43(6):161-165.
|
[53] |
徐智宝. 高强度非调质钢的氢脆敏感性研究[D]. 北京:北京交通大学,2018.
|
[54] |
王荣. 失效机理分析与对策[M]. 北京:机械工业出版社,2020:80-101.
|
[55] |
杨志康. 钢的氢脆[J]. 化工炼油机械,1984,13(5):5-14.
|
[56] |
李仁顺,吴忍畊,臧佩绅,等. 热处理对30CrMnSiA钢抗氢脆性能的影响[J]. 中国腐蚀与防护学报,1990(3):187-196.
|
[57] |
周琦,季根顺,杨瑞成,等. 管线钢中带状组织与氢致开裂[J]. 甘肃工业大学学报,2002,28(2):30-33.
|
[58] |
王葛,杜雄飞,高静娜,等. 大直径厚壁压力气瓶30CrMo钢最终热处理工艺数值模拟与实验[J]. 材料热处理学报,2016,37(3):210-215.
|
[59] |
薛正良,李正邦,张家雯. 钢的脱氧与氧化物夹杂控制[J]. 特殊钢,2001,22(6):24-27.
|
[60] |
袁玉珍,褚幼义,梁福起,等. 稀土对低硫16Mn钢抗氢损伤性能的影响[J]. 中国稀土学报,1986(3):34-41.
|
[61] |
HOLBROOK J H,COLLINGS E W,CIALONE H J,et al. Hydrogen degradation of pipeline steels:final report[R]. 1986.
|
[62] |
Standard specification for pipe,steel,black and hot-dipped,zinc-coated,welded and seamless:ASTM A 53/A 53M—2018[S]. 2018.
|
[63] |
Standard specification for seamless carbon steel pipe for high-temperature service:ASTM A 106/A 106M—2018[S]. 2018.
|
[64] |
Standard specification for seamless and welded steel pipe for low-temperature service and other applications with required notch toughness:ASTM A 333/A 333M—2016.[S]. 2016.
|
[65] |
Specification for line pipe:API Spec 5L—2018[S]. 2018.
|
[66] |
ASME Standards Technology,LLC. Hydrogen standardization interim report for tanks,piping and pipelines[R]. ASME:USA,2005.
|
[67] |
孔莹莹,崔继彤,韩辉,等. 国内外氢气管道输送技术标准对比与探讨[J]. 油气储运,2023,42(8):944-951.
|
[68] |
程玉峰. 高压氢气管道氢脆问题明晰[J]. 油气储运,2023,42(1):1-8.
|
[69] |
张明,邢泰高,易锫,等. 盐穴压缩空气储能系统N80注采管柱腐蚀特性研究[J]. 湖北电力,2023,47(1):85-90.
|
[70] |
吴志勇. 盐穴压缩空气储能库注采管柱优选[D]. 北京:中国石油大学(北京),2021.
|
[71] |
李海奎. 注空气过程中井下管柱氧腐蚀防护技术研究[D]. 青岛:中国石油大学(华东),2018.
|
[72] |
吴静. 注空气驱油过程中碳钢的腐蚀行为研究[D]. 武汉:华中科技大学,2016.
|
[73] |
贾海平. 钻井中盐膏层危害及其应对措施分析[J]. 中国石油和化工标准与质量,2023,43(3):97-99.
|
[74] |
焦国山. 盐膏层固井难点及应对措施研究[J]. 中国石油和化工标准与质量,2022,42(21):118-120.
|
1. |
庄钢,陈洪琪,高瑞全,谷立功. “十四五”期间我国重要钢管品种的发展与创新. 钢管. 2025(01): 1-6 .
![]() | |
2. |
孙宏,韩秀林,孙志刚,宗秋丽. 二氧化碳管道输送技术进展. 钢管. 2024(02): 9-16 .
![]() | |
3. |
郑贵英,庄钢. 在困境中砥砺前行——2023年我国钢管行业高质量发展之路. 钢管. 2024(04): 1-5 .
![]() | |
4. |
牛爱军,毕宗岳,韦奉,黄晓辉,刘斌,席敏敏. 我国新能源输送用管材研究进展及发展趋势. 焊管. 2024(10): 16-24 .
![]() | |
5. |
黄晓辉,毛浓召,程文广,柯星星,赵红波,赵强,张君,范庆福,刘晓龙. 超临界二氧化碳输送用X65M直缝埋弧焊管开发. 焊管. 2024(10): 80-85 .
![]() | |
6. |
赵志伟,吴亚军,白福良,郭立萍,高秋胜. 内覆不锈钢双金属复合热煨弯管开发. 钢管. 2024(05): 47-50 .
![]() |